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Institut d’Acoustique et de Mécanique (Laboratoire d’Acoustique de l’Université du Maine,
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The study of the vibroacoustic characteristics of wave guides requires an appropriate
analytical description of the acoustic fields inside pipes and cavities, taking into account
wall vibrations. A new method for determining the internal acoustic field, called ‘‘Separate
Modal Expansions’’ method, is presented and applied to a cylindrical shell. The method
uses two modal bases, the one corresponding to the in vacuo shell modes and the one
consisting of the acoustic modes of the two-dimensional Neumann transverse problem. The
expressions for the internal radiation impedances, which completely describe the internal
vibroacoustic problem, are obtained for various sets of acoustic boundary conditions
imposed on the ends of the waveguide. A comparison with the internal method (using a
modal formulation), frequently used for this type of problem, demonstrates the benefits of
the proposed approach.
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1. INTRODUCTION

The study of the vibroacoustic behaviour of cylindrical pipes has a wide variety of
applications such as muffler acoustics, industrial pipes, wind musical instruments, or
aeronautical shells. All these systems consist of an elastic structure containing an internal
fluid surrounded by an external fluid. Depending on the application, the fluid can be either
light or heavy, and at rest or not with respect to the structure. Mechanical forces and
internal or external acoustical sources usually act on such a system, thus creating a
coupling between the acoustic and vibration fields. This class of problem is usually solved
using the classical integral method. First, the vibratory response is expressed as an
expansion over the in vacuo structural modes. Then, the acoustic pressure in the internal
and external media is written using the Helmholtz–Huygens surface integral. Finally, the
momentum equation of the structure is projected on each of its modes to obtain the
coupled governing equations, where the generalized excitations are written on the right
hand side. Such a method was applied to internal [1–3] and external [4–9] vibroacoustic
problems.

For the internal vibroacoustic problem, a Green’s function satisfying Neumann
boundary conditions is often chosen, leading to the expressions for the coupling
coefficients or internal radiation impedances. In the case of a cylindrical cavity, these are
written as sums of axial and radial acoustic indexes in which each elementary term
describes the coupling between an acoustic mode and a structural mode [10]. The use of
another Green’s function, namely Green’s function for the infinite tube is more appropriate
and allows one to simplify these expressions by eliminating the sums over the axial indexes
which are then implicitly contained in the equations. This Green’s function is used by
Ouelaa et al. [11]. They study the radiation of a finite cylindrical shell interacting with
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internal and external fluids which are separated by two semi-infinite rigid cylindrical baffles
placed at both ends of the shell.

In order to further simplify the expressions for the internal radiation impedance, a new
method, called ‘‘Separate Modal Expansions’’ (SME) method, is presented here [12, 13].
In this method, the internal acoustic field is described using two modal expansions, the
in vacuo structural one and the one consisting of the eigenfunctions of the two-dimensional
Neumann transverse problem. Thus, the expressions of the radiation impedance are
simplified because the sum over the radial index does not appear anymore. This new
method is used to study the interactions between a thin cylindrical elastic shell of finite
length, and an internal fluid at rest, for various sets of acoustic boundary conditions
applied at the ends of the waveguide.

Such a study has its origins in a musical acoustic problem whose aim is to quantify the
effects of the vibrations of the body of a wind music instrument on the sound it emits.
Several vibroacoustic interactions take place in such a system [14]: structure/internal fluid
interaction, structure/external fluid interaction and inter-modal coupling due to the
radiation of the open end of the waveguide. In the present study, the interaction between
the waveguide and the internal fluid is solely considered, and results are integrated into
a global model describing the vibroacoustic behaviour of a ‘‘simplified’’ wind music
instrument [15]. In section 2, after presenting the internal vibroacoustic problem, the SME
method is described and results in terms of internal radiation impedance are shown. The
classical integral method is used in section 3 and the same results as with the SME method
are obtained. Finally, both methods are compared in section 4, thus allowing the benefits
of the SME method over the classical one to be demonstrated.

2. THE SEPARATE MODAL EXPANSIONS METHOD (SME)

2.1.    

The problem under consideration is schematically depicted in Figure 1: a cylindrical shell
of length l, mean radius a, and thickness h, is characterized by its ring angular frequency
va and its density rs . The cylinder is filled with a fluid characterized by its density r and
the sound speed c. The surfaces S0, S, Sl correspond to the co-ordinate z=0, the lateral
surface of the cylinder (r= a), and the co-ordinate z= l, respectively. Let Di be the fluid
domain inside the cylinder, delimited by S0, S, and Sl, and let n be the unitary vector
normal to the cylinder in the outward direction.

The shell motion is described by the displacement vector X, whose components u, v, and
w denote the longitudinal, circumferential, and radial displacements, respectively. The
dynamic behaviour of the shell is described by the Donnell or Flügge operator denoted
L [16]. The shell is assumed to be simply supported at both ends in order to simplify the
in vacuo normal modes. The acoustic pressure and the particle velocities normal to the
surfaces S0, S, Sl are noted p, vS0, vS and vSl, respectively. The influence of the external

Figure 1. Notations for the vibrating cylinder.
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fluid (rq a) is neglected since the present study aims at characterizing the influence of the
internal fluid on the vibrations of the cylinder. The shell is excited by a point force
F(r)=F0d(r− r0) e−jvt. Several sets of acoustic boundary conditions on the surfaces S0 and
Sl, denoted by C, are considered: C=(NN) for Neumann boundary conditions on
surfaces S0 and Sl; C=(DD) for Dirichlet boundary conditions on surfaces S0 and Sl;
C=(ND) for Neumann boundary conditions on the surface S0 and Dirichlet boundary
conditions on the surface Sl; C=(II) for conditions of continuity between the cylinder
at S0, or Sl, and a rigid semi-infinite waveguide in zQ 0, or zq l, respectively.

In the frequency domain (e−jvt), the governing equations of the problem can be written
(k=v/c) as

(D+ k2)p(r)=0 for r$Di , (1)

acoustic boundary conditions C for r$S0 and r$Sl, (2)

vS (r)= ẇ(r) for r$S, (3)

rsh(v2
a L+v2)X(r)=−p(r)n−F(r) for r$S, (4)

simply supported boundary conditions for the shell at z=0, l. (5)

The solution of the acoustic problem, equations (1) and (2), coupled to the mechanical
problem, equations (4) and (5), through the continuity equation, (3), can be obtained using
the classical integral method [17, 18]. A new approach is presented here, based on the
procedure described by Bruneau and Bruneau [12]. The main feature of the method is that
it leads to an expression for the internal acoustic field which contains two separate modal
expansions, one involving the in vacuo shell modes and the other one involving the acoustic
modes of the two-dimensional internal transverse Neumann problem. It is shown that such
a description of the internal acoustic field is particularly well suited for the problem that
we are interested in here.

2.2.    

The shell displacement vector X can be expanded making use of the in vacuo normal
modes of the simply supported shell:

X= &uvw'= s
m

AmFm . (6)

The eigenvectors, Fm , are the solutions of the homogeneous problem

rsh(v2
a L+v2

a )Fm =0, (7)

where vm is the resonance angular frequency of the mechanical mode m. The parameter
m states for a set of four integers

m=(m, q, s, j), (8)

where m is the circumferential index, q the axial index, s the symmetry index, and j the
type of mode index (bending for j=1, extension–compression for j=2, and twisting for
j=3). In the classical form, the modes Fm are written

Fm = &Um cos (qpz/l) sin (mu+ sp/2)
Vm sin (qpz/l) cos (mu+ sp/2)

sin (qpz/l) sin (mu+ sp/2) '. (9)
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They satisfy the orthogonality relationship

rsh�Fm , Fm'�S = rsh s
3

i=1

�Fim =Fim'�S =
rshpal

om
(U2

m +V2
m +1)dmm' =mmdmm', (10)

where mm denotes the modal mass associated to the mode m, om the Neumann factor (om =1
if m=0, o=2 if mq 0), d the Kronecker notation, Fim (i=1, 2, 3) the components of Fm ,
and where the inner product � · = · �S is defined by �g=h�S = fS gh* ds. The relation
obtained by substituting equation (6) into equation (4) describes the shell vibrations under
the acoustic and mechanical loads; its inner product with the eigenfunction Fm , leads to

mmAm (−v2 +v2
m )=Fm +Pm , (11)

where the generalized force

Fm = �F, Fm�S = s
3

i=1

�Fi =Fim�S (12)

and generalized pressure

Pm = �p · n, Fm�S = �p=F3m�S (13)

are the inner product of the given point force F and of the internal wall pressure p(r= a)
with the shell mode Fm , respectively.

2.3.     

Solving equation (11) requires calculating the internal acoustic pressure field. The
method employed here consists of constructing this field component by component. Using
the shell displacement field equation, equation (6), and the continuity equation, equation
(3), the radial particle velocity on the surface S can be written as a function of the radial
component F3m of Fm :

vr (r= a, u, z)= vS (u, z)=−jv s
m

AmF3m (u, z). (14)

This expression for the radial particle velocity can be extended to the fluid domain rQ a
as follows:

vr (r, u, z)= s
m

v3m (r)F3m (u, z)+V(r, u, z), (15)

where, using the continuity relation, equation (3), one gets

v3m (r= a)=−jvAm and V(r= a)=0. (16)

An acoustic velocity potential is defined from the relations

v=−9Q and p=−jvrQ. (17)

Making use of the relationship vr =−1rQ, the potential Q can be written as

Q(r, u, z)= s
m

Q3m (r)F3m (u, z)+ s
a

Qra (r)Quza (u, z), (18)
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with

1rQ3m (r= a)=+jvAm and 1rQra (r= a)=0, (19)

and where the last sum being related to the factor V in equation (15). This velocity
potential must satisfy Helmholtz homogeneous equation

(D+ k2)Q(r)=0, r$Di . (20)

Considering the expression for Q, equation 18, the following two conditions for Q are
sufficient to satisfy equation (20):

[m,
DrQ3m (r)
Q3m (r)

+
1
r2

12
uF3m (u, z)
F3m (u, z)

+
12

zF3m (u, z)
F3m (u, z)

+ k2 =0, (21)

[a,
DrQra (r)
Qra (r)

+
1
r2

12
uQuza (u, z)
Quza (u, z)

+
12

zQuza (u, z)
Quza (u, z)

+ k2 =0, (22)

where

Dr · =
1
r

1

1r 0r 1

1r
· 1.

Conclusions can be drawn as follows:
(i) equation (22) enables one to determine the general expression for Qra (r)Quza (u, z):

Qra (r)Quza (u, z)=
1

−jrv
[B+

a ejkmnz +B−
a ejkmn (l− z)]Ca (r, u), (23)

where B+
a and B−

a are to be determined from equation (2). The functions Ca denote the
orthonormal eigenfunctions of the transverse two-dimensional Neumann problem, the
subscript a being the triplet of integers

a=(m, n, s), (24)

where m is the circonferential index (mq 0), n the radial index (nq 0), and s the index
of symmetry (s=0, 1):

Ca =Jm (kWmnr) sin (mu+ sp/2)/La , (25)

where

L2
a =

pa2

om
(1− g2

mn )J2
m (kWmna), with g2

mn =60m2/(kWmna)2

if m=0
if mq 0

, (26)

the eigenvalues kmn being given by k2
mn = k2 − k2

Wmn (0E arg (kmn )E p/2), where
J'm (kWmna)=0 (kWmn e 0, ne 0).

(ii) From equation (21), the modes F3m must satisfy the relationships (see Appendix):

12
uF3m (u, z)/F3m (u, z)=C1 and 12

zF3m (u, z)/F3m (u, z)=C2, (27)

where C1 and C2 are constants. These conditions show the limits of the SME method.
The solution for the particle velocity in the fluid domain, equation (15), is valid only
if the radial component F3m (u, z) satisfy equation (27), which can therefore be called
equations of admissibility for shell modes. For simply supported boundary conditions,
these admissibility conditions can be written as

12
uF3m (u, z)/F3m (u, z)=−m2 and 12

zF3m (u, z)/F3m (u, z)=−(qp/l)2. (28)
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(iii) Considering (ii), equation (21) which characterizes Q3m (r) is a Bessel equation and
its solution which satisfies the boundary condition, equation (19) can be expressed as

Q3m (r)=
jvAmJm (kqr)
kqJ'm (kqa)

, where k2
q = k2 − (qp/l)2. (29)

Finally, from equations (18), (23) and (29), the acoustic pressure can be expressed as a sum
of two terms

p(r)= pr
S (r)+ pr

S0l(r), (30)

where

pr
S (r)= rc s

m=(m,q,s,j)

−jvAm$j k
kq

Jm (kqr)
J'm (kqa)%F3m (u, z), (31)

and

pr
S0l(r)= s

a=(m,n,s)

[B+
a ejkmnz +B−

a ejkmn (l− z)]Ca (r, u). (32)

This solution is called a Separate Modal Expansions (SME) solution. The first term, pr
S (r),

describes the internal acoustic field generated by the shell (surface S), taking into account
the boundary conditions on the surfaces S0 and Sl to be specified (see subsection 2.4). This
term is expressed here in an adaptive manner using the in vacuo shell modes expansion
and not using the acoustic eigenfunctions, as would be the case for the classical integral
approach. The second term, pr

s0l(r) corresponds to the acoustic field generated by the
surfaces S0 adn Sl and is written as a modal expansion function of the acoustic
eigenfunctions of the transverse two-dimensional Neumann problem.

2.4.       S0  Sl

The unknowns B2
a of the equation for the acoustic field, equation (30), are determined

using the boundary conditions on the surfaces S0 and Sl. These conditions can be written
as an impedance relation:

�p=Ca�Si =Zia�vSi =Ca�Si , (33)

where i corresponds to the surface considered (i=0 or i= l). The impedances Zia are
defined for each set of boundary conditions (see subsection 2.1)

C=(NN), Z0a =Zla =a,

C=(DD), Z0a =Zla =0,

C=(ND), Z0a =a, Zla =0,

C=(II), Z0a =−Zla =−rck/kmn .

Substituting in equation (33) the expressions of the pressure p(r), equation (30) and the
axial particle velocity vSi =−1zQ (obtained by combining equation (17) and (30)) gives
the set of equations

$ 1−Z� 0a

ejkmnl(1−Z� la )
ejkmnl(1+Z� 0a )

1+Z� la %$B+
a

B−
a %=$Z0aG0a

zlaGla%, (34)
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where the non-dimensional parameter Z� ia is

Z� ia =
Zia

rc
kmn

k
, (35)

and where the generalized velocities Gia are defined by

Gia = s
m

−jvAm

qp/l
kqJ'm (kqa)

�Jm (kqr) sin (mu+ sp/2)=Ca�Si61(−1)q

if i=0
if i= l

, (36)

=2$ p

om (1− g2
mn )%

1/2

s
q

qp/l
k2

mn −(qp/l)2 jvAm61(−1)q

if i=0
if i= l

. (37)

The solution of equation (34) leads to:

B+
a =

G0aZ0a /[1+Z� 0a ]−Gla ejkmnlZla /[1+Z� la ]
[1−Z� 0a ]/[1+Z� 0a ]− e2jkmnl[1−Z� la ]/[1+Z� la ]

, (38)

B−
a =

GlaZla /[1−Z� la ]−G0a ejkmnlZ0a /[1−Z� 0a ]
[1+Z� la ]/[1−Z� la ]− e2jkmnl[1+Z� 0a ]/[1−Z� 0a ]

. (39)

Substituting this last result in equations (30)–(32) gives the solution of the problem
equations (1)–(5). When C=(DD), the solution of the problem enables some interesting
remarks to be made. The terms B2

a , equations (38) and (39) vanish and, therefore, the term
pr

S0l is equal to zero, enabling conclusions on the pressure field pr
S to be drawn: it

corresponds to the internal field generated by the vibrating surface S when Dirichlet
boundary conditions are applied on S0 and Sl. In that case, the continuity of the
vibrational and acoustic velocity fields, given by equation (3), occuring at the co-ordinates
(r= a, z=0) and (r= a, z= l) is satisfied. Indeed, the condition of zero radial velocity
required by the simply supported mechanical boundary conditions at z=0, l is compatible
with the Dirichlet boundary conditions imposed on S0 and Sl: if the pressure is uniformly
equal to zero on the surface Si , so is the radial velocity gradient and, therefore, so is the
radial acoustic velocity. The generalized velocities, Gia (i=0 and i= l), can then be
interpreted as axial generalized acoustic velocities generated on the surface Si by the
vibrations of the surface S when the acoustic field obeys Dirichlet boundary conditions
on S0 and Sl. For the other sets of acoustic boundary conditions C=(NN), (ND), (II),
the extra term pr

S0l does not vanish. For example, if, in order to compare with the classical
integral method, one considers the problem (NN), the expression for the internal acoustic
field becomes

p(r)= pr
S + pr

S0l (40)

where

pr
S0l = rc s

m=(m,q,s, j )

(−jvAm )2jka
qpa
l

s
n

Jm (kWmnr)
Jm (kWmna)[1− g2

mn ]
Fmnq (z) sin (mu+ sp/2), (41)

with

Fmnq (z)=
1

[kmna][(kmna)2 − (qpa/l)2] 6sin (kmn (z− l/2))/cos (kmnl/2)
cos (kmn (z− l/2))/sin (kmnl/2)

q even
q odd

, (42)

and where pr
S is given by equation (31).
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2.5.   

The generalized pressure, Pm , defined by equation (13) can be written as a function of
the modal amplitudes Am using equations (30), (37), (38) and (39):

Pm =+jv s
m'= (m',q',s', j' )

Am'Zi
mm'. (43)

The impedance, Zi
mm', called internal radiation impedance, describes the interaction between

the mechanical modes m and m'. Its normalized value Z� i
mm' can be split into real and

imaginary parts as

Z� i
mm' =

Zi
mm'

rc2pal
=R�mm' − jI�mm', (44)

where R�mm' and I�mm' are the normalized radiation resistance and reactance, respectively. This
impedance Z̄i

mm' can be written as follows

Z� i
mm' = dmm'dss'(Z� c

mm' + dmm'Z� d
mm ), (45)

where m=(m, q, s, j) and m'= (m', q', s', j'). The crossed impedance, Z� c
mm', and the

complementary term, Z� d
mm , (necessary to obtain the direct impedance Z� i

mm =Z� c
mm +Z� d

mm ) can
then be expressed as (see equations (40) to (45))

Z� c
mm' =−j

2
om

a
l

ka
qpa
l

q'pa
l

s
n

xnmm'

kmna[1− g2
mn ][(kmna)2 − (qpa/l2)][(kmna)2 − (q'pa/l)2]

,(46)

Z� d
mm =

−j
2om

k
kq

Jm (kqa)
J'm (kqa)

, (47)

where the auxiliary parameter xnmm' is given by

xnmm' = (−1)q[1+ (−1)q+ q'] tan (kmnl/2)](−1)q, if C=(NN),

xnmm' = 0, if C=(DD),

xnmm' = tan (kmnl), if C=(ND),

xnmm' = j[1− (−1)q ejkmnl][1+ (−1)q+ q']/2, if C=(II).

Using equation (44) and isolating the direct impedance terms Zi
mm , the governing equation

of the shell motion, equation (11), can be written

[−mmv
2 −vImm −jvRmm +mmv

2
m ]Am =Fm +jv s

m'$ m

Zi
mm'Am'. (48)

The effect of the fluid on the structure is threefold: a reactive effect described by (−vImm ),
a damping due to internal radiation described by (−jvRmm ), and an inter-modal coupling
described by the term (jv am'$ m Zi

mm'Am ). Considering the definition of Imm given by equation
(44) and the convention (e−jvt), the reactive effect coming from the term Imm corresponds
to an effect of added mass if Imm e 0 or of added stiffness if Imm E 0.
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2.6.    

When the fluid is not dissipative (c is real), the radiation impedances, equations (46) and
(47), are purely imaginary for the cases (NN), (DD) and (ND). The influence of the fluid
is then reduced to a reactive effect. For these three cases, the acoustic power across the
surfaces S0 and Sl is equal to zero. The domain Di is then confined and the fluid does not
introduce any loss by internal radiation. In the case (II), however, the internal domain is
not confined any longer, and losses by internal radiation are not null, thus implying that
R�mm' $ 0, even if c is real (see equation (46) in the case C=(II)).

In order to take into account the damping in the internal fluid—which is an essential
physical phenomenon—the sound speed c is a complex number: c= c0(1− jh), with hq 0.
The damping factor in the internal fluid h is set to the constant value h=0·01. (A complete
model which takes into account the visco-thermal losses effects can be found in reference
[19]). When c is complex, all the cases, (NN), (DD), (ND), and (II), are such that R�mm' $ 0
and I�mm' $ 0.

Figure 2 shows the normalized direct radiation resistance and reactance for the
circumferential index m=0 and the longitudinal index q=1 for the four considered cases.

Equations (46) and (47) show that the direct impedance reaches its maximum when the
non-dimensional wavenumber ka is roughly equal to kca=[(kWmna)2 + (qpa/l)2]1/2. More
precisely, for the four sets of boundary conditions, these maxima are reached for (see
Figure 2):

(ka)2 = (kWmna)2 +6[(2r+1)pa/l]2,
[(2r)pa/l]2,

q even,
q odd,

if C=(NN),

(ka)2 = (kWmna)2 + (qpa/l)2, if C=(DD),

(ka)2 = (kWmna)2 + [(2r+1)pa/2l]2, if C=(ND),

(ka)2 = (kWmna)2, if C=(II), (49)

For the cases (NN) and (ND), an integer denoted r in equation (49), is used to identify
the non-dimensional wavenumber near kca, for which local maximum radiation resistances
are reached. For example, in the case C=(ND) (Figure 2), the values taken by r show
these maximum, which are reached near kW00a=0 and kW01 =3·83. In this case, the
particular choice of the parameter l/a= p is such that the position of the maximum is

Figure 2. Normalized direct resistance and reactance for circumferential index m=0 and longitudinal index
m=1 (h=0·01, l/a= p) for the different boundary conditions C: ·–·–, (NN); –––, (DD); · · · , (ND); ——, (II).
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Figure 3. Direct normalized resistances for circumferential index m=0 and longitudinal index q=1.
(h=0·01, l/a=10p), C: ·–·–, (NN); –––, (DD); · · ·, (ND); ——, (II).

obtained for integer or half integer values for ka, depending on the problem considered.
The maxima associated to the wavenumber kW01 =3·83, are all closer to
kca=[(kWmna)2 + (qpa/l)2]1/2, when the parameter l/a and the critical wavenumber kca are
increased. Thus, for high value of l/a (case of a slender shell), and internal loss factor
h=0·01, the secondary maximum does not exist anymore, except near the particular
critical wavenumber associated to kW00a=0. This phenomenon is shown in Figure 3 for
the direct normalized resistance and for m=0 and q=1. This result shows that radiation
impedances are nearly independant of the boundary conditions set C when ne 1 for m=0
(as shown in Figure 3), and when mq 1 for all values of n (as shown in Figure 4). Typical
values for the direct resistance and reactance, for circumferential indexes corresponding
to higher order modes (m=1 and m=2), are shown in Figure 4.

Typical values for cross radiation resistance and reactance for m=0, q=1 and q'=3
are depicted in Figure 5. As already seen, in the case (DD), these quantities are strictly
equal to zero. In the other cases, the cross radiation resistances can have positive and

Figure 4. Direct normalized resistance and reactance for circumferential indexes m=1, 2 and axial indexes
q=1, 5, 10 (h=0·01, l/a=10p).
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Figure 5. Cross normalized resistance and reactance for circumferential index m=0 and longitudinal indexes
q=1 and q'=3. (h=0·01, l/a=10p). ——, (II); · · ·, (ND); ·–·–, (NN).

negative values, which is not the case of the direct resistances, as they are always positive
quantities.

3. THE INTEGRAL METHOD

In order to show the benefits of the SME method, the expressions for the internal
radiation impedance are derived in this section for the cases (NN), (DD), (ND) and (II),
making use of the integral method. This classical method is applied with the Green’s
function for the infinite tube, which satisfies Neumann boundary conditions on the lateral
surface S and Sommerfeld’s conditions for z=2a. This kind of Green’s function is
widely used in propagation problems, but not very often in vibroacoustic problems dealing
with finite length tubes. As it will be shown, the coupling terms obtained with this Green’s
function are quite simple to derive, but appear on a more complex form than with the SME
method.

3.1.    

The Green’s function corresponding to an infinite tube is the solution of [20]

8(D+ k2)Ga(r, r0)=−d(r− r0),
1nGa(r= a)=0,
Sommerfeld’s conditions for z=2a.

(50)

Making use of an expansion over the solutions of the two-dimensional transverse
Neumann problem

0Dr +
1
r2 12

u + k2
Wmn1Ca (r, u)=0, (51)

1rCa (r= a)=0, (52)

which are denoted Ca , where a=(m, n, s), the Green’s function can be written as [18]:

Ga(r, r0)=
j
2

s
a

Ca (r, u)C*a (r0, u0)
ejkmn =z− z0=

kmn
. (53)
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The Helmholtz–Huygens integral

P(r)=gS0,Sl

[1n0p(r0)Ga(r, r0)− p(r0)1n0Ga(r, r0)] dS0 +gS

1n0p(r0)Ga(r, r0) dS0, (54)

leads to a sum of two terms, pc(r) and pd(r), corresponding to the radiation from the ends
surfaces (S0 and Sl) and from the lateral surface S, respectively. Considering the expression
for Ga(r, r0) (equation 53), each term can be expanded as the sum of two travelling waves
as follows:

p(r)= pc(r)+ pd(r), (55)

where

pc(r)= s
a

[C+
a ejkmnz +C−

a ejkmn (l− z)]Ca (r, u),

and

pd(r)= s
a

[D+
a (z) ejkmnz +D−

a (z) ejkmn (l− z)]Ca (r, u).

The amplitude of the ingoing and outgoing waves, D+
a (z) and D−

a (z), can be expressed as
the inner product of the axial velocity vS over the surfaces S(0,z) and S(z,l) which denote the
part of S between the axial co-ordinate (0 and z) and (z and l), respectively:

D+
a (z)=−rc

k
2kmn

�vS =Ca ejkmnz0�S(0,z), D−
a (z)=−rc

k
2kmn

�vS =Ca ejkmn (l− z0)�S(z,l).

(56)

Making use of the modal expansion of equation (14), the amplitudes D+
a can be expressed

in terms of the modal amplitudes Am .

3.2.       S0  Sl

The unknown coefficients C2
a are obtained from impedance relationships, equation (33),

which describe the boundary conditions on S0 and Sl:

C+
a =

−D−
a (0) ejkmnl +D+

a (l) e2jkmnl[1−Z� la ]/[1+Z� la ]
[1−Z� 0a ]/[1+Z� 0a ]− e2jkmnl[1−Z� la ]/[1+Z� la ]

, (57)

C−
a =

−D+
a (l) ejkmnl +D−

a (0) e2jkmnl[1+Z� 0a ]/[1−Z� 0a ]
[1+Z� la ]/[1−Z� la ]− e2jkmnl[1+Z� 0a ]/[1−Z� 0a ]

. (58)

These expressions show that C+
a are equal to zero in the case C=(II). Thus, the pressure

pc can be interpreted as the radiated contribution from the surface S, when the vibrating
shell is extended with two semi-infinite cylindrical baffles. Splitting the pressure given by
equation (55) into two terms, pc and pd, is a natural consequence of the integral expression
equation (54). The case C=(DD), which is very particular for the reasons mentioned
above, does not appear in this separate form. Furthermore, in the case C=(NN), the
acoustic pressure equation (55), can be written as

p(r)= pc + pd (59)
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p(r)= pr
s0l + rc s

m=(m,q,s,j)

−jvAm$2jka s
n

Jm (kWmnr)
[1− g2

mn ][(kWmna)2 − (kqa)2]%F3m , (60)

where the term pr
S0l is given by equation (41). This solution for the (NN) problem is given

in order to compare the integral method with the SME method (see section 4).

3.3.   

Inserting equations (55)–(58) into equation (4) leads to the coupled equation (11). The
radiation impedance can then be obtained. The expressions for the cross terms Zc

mm' are the
same as those obtained previously in equation (46). The complementary term Z� d

mm is
expressed in the form

Z� d
mm =

−j
om

ka s
n

1
[1− g2

mn ][(kWmna)2 − (kqa)2]
, (61)

where the sum involves the acoustic radial modal indexes n. The integral method leads to
a more complex expression for the term Z� d

mm than the one obtained with the SME method
(equation (47)).

4. BENEFITS OF THE SME METHOD

The expressions for the acoustic field, equations (40) and (60), give the same results. The
aim of this section is to compare these expressions. Expressions (60) and (40) being equal,
the following relationship is satisfied:

s
+a

n=0

2Jm (kWmnr)
[1− g2

mn ][(kWmna)2 − (kqa)2]Jm (kWmna)
=

Jm (kqr)
kqaJ'm (kqa)

, (62)

where J'm (kWmna)=0 and k2
q = k2 − (qp/l)2. In order to demonstrate this result, the

function

f: x$ [0, 1]:f(x)=
a
kq

Jm (kqax)
J'm (kqa)

, where x= r/a, (63)

is expressed as a Dini expansion ([21], p. 601). This kind of expansion corresponds to an
inner product with over the functions x:Jm (lnx), where ln denotes the nth strictly positive
solution of zJ'm (z)+HJm (z)=0; H being a real constant. For this reason, expression (62)
is not a Fourier–Bessel expansion. It can be shown that

f(x)=B0(x)+ s
n

bnJm (lnx), [me 0, (64)

where

B0(x)= 82(m+1)xm g
1

0

tm+1f(t) dt

0

if H+m=0

if H+mq 0,
(65)

bn =

2l2
n g

1

0

tf(t)Jm (lnt) dt

(l2
n −m2)J2

m (ln )+ l2
n J'2m (ln )

. (66)



.   . 1178

Applying this result in the particular case H=0, one obtains relation (62). H$ 0 means
that the impedance of the wall material would be taken into account. Such a relation shows
the equality of expressions (40) and (60). The sum of the acoustic radial index n in equation
(60) is implicitly done using the SME method. In a similar way, the same kind of
summation can be found for the expression of the radiation impedance, equation (61), and
is avoided in equation (47) making use of the Dini expansion (62) for r= a.

5. CONCLUSION

This paper presents the vibroacoustic behaviour of a cylindrical shell of finite length
interacting with an internal fluid. Such a system is completely determined by the
inter-modal radiation impedances of the cylinder which allow one to describe the effects
of the internal fluid onto the structure: a damping effect by internal radiation, an effect
of added mass or stiffness, and finally, an inter-modal coupling due to internal radiation.
Inter-modal radiation impedances are obtained for four sets of boundary conditions
applied at the end of surfaces of the tube. A new method, called Separate Modal
Expansions, is presented in this paper and enables one to obtain simpler expressions for
the internal radiation impedances than when using the classical integral method.
Numerical results for the radiation impedances are presented for various sets of boundary
conditions on the end sections of the tube. In order to demonstrate the benefits of the
proposed approach, the expressions for the internal radiation impedance are compared
with the ones obtained using the classical method. In the classical method, these
expressions contain, for a cylindrical cavity, summations over the radial components of
the acoustic modes. The use of the SME method allows one to simplify further the
expressions for the internal acoustic field and for the internal radiation impedance, thus
demonstrating the value of the present method.
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APPENDIX

In this appendix, the admissibility conditions for shell modes as defined by equation (27)
is demonstrated. The condition (21) which has to be satisfied by the radial component of
shell mode F3m has the form

[r$Di , f(r)=
1
r2 g(u, z)+ h(u, z)=0. (A1)

Such an equation, applied with two differents values of the variable r denoted r1 and r2,
leads to:

g(u, z)= [f(r1)− f(r2)]/[1/r2
1 −1/r2

2 ]. (A2)

Because the variables, r, u and z are independant, the function g(u, z) is constant. Making
use of this result and applying a similar reasoning for equation (67), it can be shown that
h(u, z) is constant too. Thus, the equation of admissibility can be written as equation (27).


